Eerlijkheid binnen AI: het sollicitant-perspectief

Fairness in AI recruitment

Wat vinden sollicitanten van recruitment op basis van AI?

Op 21 maart 2019 werd tijdens de conferentie Nederland Digitaal volop gesproken over de invloed van Artificial Intelligence (AI) op de samenleving. Verschillende onderwerpen kwamen aan bod, waaronder de digitalisering van recruitment. De traditionele werving en selectie, waarbij HR-medewerkers zelf een CV en motivatiebrief lezen en beoordelen, heeft plaatsgemaakt voor het zogenoemde e-recruitment of ATS (Applicant Tracking System). Door middel van algoritmes worden CV’s en motivatiebrieven gescand op bepaalde vaardigheden of kenmerken waar de kandidaat aan moet voldoen. De kandidaat wordt op basis van deze analyse afgewezen of uitgenodigd voor een sollicitatiegesprek. Maar wordt deze manier van afwijzen als eerlijk ervaren?

 

Eerlijkheid

Dat is een uiterst relevante vraag, want de sollicitanten zijn een belangrijke groep die met AI te maken krijgt en hun ervaring is bepalend voor maatschappelijke acceptatie van de inzet van AI bij recruitment. Naar aanleiding de AI-ontwikkelingen binnen recruitment, zijn er enkele onderzoeken verricht naar het effect van deze ontwikkelingen op sollicitanten. Zo toont onderzoek van Randstad1 aan dat 82% van de kandidaten het prefereert als er naast alle innovatieve technologieën ook ruimte is voor persoonlijk contact. Dit komt overeen met ander onderzoek2 waarbij een derde van de sollicitanten aangeeft dat ze offline solliciteren prefereren boven online solliciteren, ook al hadden ze in het verleden een goede ervaring met e-recruitment. Maar wat vinden kandidaten nu precies van recruitment op basis van AI?

Fairness is hierbij een belangrijk begrip: in hoeverre wordt de manier van selectie als eerlijk ervaren? Er bestaan twee soorten ervaren eerlijkheid: eerlijkheid gebaseerd op de procedure (procedural justice) en eerlijkheid gebaseerd op de uitkomsten (distributive justice). Dit artikel richt zich op procedural justice. Of er wel of niet sprake is van een ‘eerlijk proces’ volgens de sollicitant, hangt af van drie aspecten: transparantie, objectiviteit en - voor de sollicitant het belangrijkste aspect - feedback. Deze drie begrippen worden nader toegelicht.

Transparantie

Of een selectieprocedure als eerlijk wordt ervaren door de kandidaten, hangt dus onder meer af van de transparantie binnen het proces. Maar wat betekent transparantie nu precies? Volgens een van de woordvoerders van de ECP (Platform voor de InformatieSamenleving) die tijdens de conferentie Nederland Digitaal sprak over eerlijkheid, betekent transparantie “dat actoren wetenschap hebben van het feit dat AI toegepast wordt, hoe besluitvorming tot stand komt en welke consequenties dit mogelijk voor hen heeft”. Problemen die sollicitanten en gebruikers van de algoritmen ervaren met betrekking tot transparantie is dat het lang niet altijd duidelijk is hoe de beslissing wordt genomen om iemand al dan niet aan te nemen. Hoe komt het dat de transparantie en uitlegbaarheid van algoritmes vaak beperkt is? Dat heeft in de eerste plaats te maken met privacy-gerelateerde aspecten, zoals het gebruik van trainingsdata. Daarnaast zijn er commerciële redenen, namelijk de mate van concurrentie binnen AI-ontwikkeling en innovatie, waardoor algoritmes door organisaties niet snel vrijgegeven worden. Tenslotte zijn veel algoritmes zelf lerend en daardoor ook voor de ontwikkelaars niet altijd transparant. 

Naar aanleiding van de zorgen die het publiek heeft over de algoritmisering van de arbeidsmarkt, wordt er binnen de overheid nagedacht over transparantie bij toepassing van algoritmes. Er is inmiddels zelfs een motie ingediend bij de voorzitter van de Eerste Kamer over de transparantie van de algoritmes die worden gebruikt bij de overheid. Daarbij zijn verschillende oplossingsrichtingen mogelijk. Zo zijn er bijvoorbeeld al manieren om de algoritmes te controleren aan de hand van andere algoritmes, de zogenoemde Explainable AI. Ook wordt er gekeken naar richtlijnen voor ethische toepassing van aIgoritmes3. Hoe dit in de toekomst op het terrein van AI bij recruitment zal uitpakken is nog de vraag.

Objectiviteit

Naast het belang van transparantie is er het aspect van objectiviteit dat mede bepaalt hoe eerlijk het werving en selectieproces wordt ervaren. Dit aspect is met name belangrijk als we kijken naar biases binnen beslissingen. Een van de opvallendste voorbeelden uit de praktijk is het verhaal van schrijfster en wiskundige Cathy O’Neil4. Zij heeft een boek geschreven genaamd ‘Weapons of math destruction’ over de implicaties van de keuzemodellen van algoritmes. Zij schreef haar boek naar aanleiding van het verhaal van Sarah Wysocki, een lerares in de Verenigde Staten, die werd aangenomen omdat zij volgens velen een van de beste leraren was die zij kenden. Echter, na twee maanden werd zij op basis van een beoordeling door een algoritme ontslagen.

De beoordeling kwam tot stand op basis van een complex model dat het aandeel van de docent in de toetsuitslagen van leerlingen op rekenen en lezen vaststelt. En terwijl de schoolleiding zeer tevreden was over haar presteren, werd de ontslagbeslissing niet herzien. Hier was sprake van een duidelijke tegenstelling, namelijk haar prestaties als lerares en de conclusies die de algoritmes trokken. Toen Cathy O’Neil naar de inzage van deze algoritmes vroeg, werd haar verzoek geweigerd. Dit en vele andere voorbeelden, zoals het schandaal van Amazon5 en Google6, waarbij bepaalde groepen werden achtergesteld in het recruitment en selectieproces, laten zien dat algoritmes niet per definitie objectief zijn en dat biases ook kunnen optreden in het beslisproces van algoritmes. Helaas is deze subjectiviteit (nog) niet volkomen te verhelpen binnen de machine learning algoritmes, des te meer omdat deze algoritmes leren uit bestaande datasets (training set) terwijl deze data al gekleurd kunnen zijn. Het belangrijk om hier als recruiters in ieder geval bewust van te zijn.

Feedback

Het belangrijkste aspect van eerlijkheid binnen de recruitment en selectieprocedure volgens sollicitanten is feedback. Dit bleek uit onderzoek2 waarbij zowel de andere twee aspecten, transparantie en objectiviteit, samen werden gemeten met het aspect feedback. Hoewel feedback dus belangrijk is, blijkt uit onderzoek verricht door de Britse carrièreplatform Debut7 dat 83% van de kandidaten geen feedback ontvangt; in België8 ontvangt maar liefst 86% van de sollicitanten geen feedback. Overigens verwacht rond de 49% van de kandidaten wél feedback na een sollicitatie (gemiddeld in Europa)9Uit deze cijfers blijkt dat een groot deel van de sollicitanten het moet doen met de standaardafwijzingen, terwijl feedback juist als belangrijkste aspect wordt gezien van eerlijkheid. Op basis hiervan kunnen we zeggen dat één ding vast staat, namelijk dat het vragen om feedback als sollicitant en het leveren van feedback als organisatie geen overbodige zaak is. 

Conclusie

Waar veel artikelen zich vooral richten op de belangen en behoeften van recruiters en ontwikkelaars, is het goed om stil te staan bij de verwachtingen en ervaringen van de sollicitanten. De vraag is wat zij vinden van de technische ontwikkelingen binnen de werving en selectie. Is beslissingen nemen op basis van de uitkomsten van een machine een eerlijke manier van beslissen? Dat hangt vooral af van de mate van transparantie, de ervaren objectiviteit en de feedback. Dit zijn dan ook de aspecten waar de organisaties aan kunnen werken, als zij de mening en ervaring van sollicitanten serieus nemen. Daarnaast blijkt dat kandidaten de procedure als eerlijker ervaren als ze meer informatie over zichzelf kunnen aanleveren tijdens het sollicitatieproces10.

Selectie is uiteindelijk een tweezijdig afwegingsproces, waarbij de organisatie kiest voor de sollicitant, maar waarbij ook de sollicitant kiest voor de organisatie. Eén ding is duidelijk: er zijn wel degelijk bedenkingen bij sollicitanten over de eerlijkheid van procedures bij werving en selectie door AI. Voor organisaties is het dus van belang om deze aspecten bij e-recruitment in de gaten te houden en waar nodig te verbeteren. En als kandidaat is het ook belangrijk met een kritisch oog te blijven kijken naar de manier waarop organisaties jou aannemen. Misschien is het tijd om als toekomstige sollicitanten en werkgevers hier goed over na te denken.

 



1 www.randstadusa.com/about/news/an-over-automated-recruitment-process-lea...

2 Thielsch, M. T., Träumer, L., & Pytlik, L. (2012). E-recruiting and fairness: the applicant’s point of view. Information Technology and Management, 13(2), 59-67.

3 https://dataschool.nl/deda/

4 https://www.volkskrant.nl/wetenschap/wiskundige-cathy-o-neil-waarschuwt-...

5https://www.ad.nl/tech/amazon-draait-sollicitatierobot-de-nek-om-na-disc...

6https://nationalpost.com/life/is-the-google-algorithm-sexist

7https://www.hrmacademy.nl/geef-sollicitant-feedback/

8https://www.bloovi.be/artikels/persoonlijk-groeien/2018/onderzoek-amper-...

9https://www.werf-en.nl/de-jacht-op-talent-wat-kandidaten-in-europa-verwa...  en https://intelligence-group.nl/nl/nieuws/wat-vinden-europese-kandidaten-b...

10 Faliagka, E., Iliadis, L., Karydis, I., Rigou, M., Sioutas, S., Tsakalidis, A., & Tzimas, G. (2014). On-line consistent ranking on e-recruitment: seeking the truth behind a well-formed CV. Artificial Intelligence Review, 42(3), 515-528.
 

Thema's

Onderwerpen

Sprekers en experts

Laura Lamers

Inclusief Platformwerk: drie initiatieven, een veelvoud aan inzichten

Hoe maken we beter gebruik van de potentiële meerwaarde van online arbeidsplatforms voor een meer inclusieve arbeidsmarkt? Die vraag stond centraal in de ‘challenge Inclusief Platformwerk’ van NSvP en SBCM, van waaruit drie initiatieven (KlusCV, CurrentWerkt! en LaNSCO United) kansen en obstakels hebben verkend. 
De presentatie van Laura biedt een kijkje in de lessen die zijn opgedaan in het monitoren van de drie challenge initiatieven. Specifiek wordt ingegaan op de kansen van platformwerk voor mensen met een kwetsbare positie op de arbeidsmarkt, en de rol die platformtechnologie kan spelen om kansen voor inclusie te vergroten. Hiermee biedt de presentatie een eerste indruk van de inzichten die worden gedeeld in het boek ‘Inclusief Platformwerk’. 

Laura Lamers is PhD onderzoeker aan de Universiteit Twente, faculteit Faculteit Behavioural, Management and Social Sciences. Haar focus ligt op het snijvlak van technologie en samenleving, meer specifiek menselijke waardigheid. 

Niels Arntz

In een vraaggesprek met Luc Dorenbosch (NSvP) zet Niels uiteen hoe hij als platformondernemer in Nederland aankijkt tegen de ontwikkelingen binnen platformwerk. Hoe luister je als platform naar de mensen die via je platform werken? Wat kunnen samenwerkingen tussen platforms en overheid opleveren? Wat denkt Niels over de kans van slagen van platformwerk, ook als mensen niet geheel zelfstandig kunnen werken? Kan het breder of anders dan nu het geval is? Hoe hij zou willen dat het debat over platformwerk gevoerd zou worden voor meer innovatie op de arbeidsmarkt? 

Niels Arntz is medeoprichter van horecaplatform Temper.

Muriel Serrurier Schepper

Ontdek de kracht van data labeling: kansen voor een diverse en inclusieve arbeidsmarkt

(duopresentatie met Marjolein Grootjen)

In deze sessie ontdekken we hoe mensen met een afstand tot de arbeidsmarkt de kans krijgen om zichzelf opnieuw te positioneren op de arbeidsmarkt door middel van data labeling in een kantooromgeving. Onder de begeleiding van een deskundige jobcoach werken ze in het AI Annotatie Lab aan hun vaardigheden en persoonlijke ontwikkeling om zo de weg naar de arbeidsmarkt te vinden. Tijdens de sessie wordt uitgelegd hoe dit project tot stand is gekomen en wat de werkzaamheden precies inhouden. 
Deze sessie biedt een inspirerend verhaal over hoe een nieuw soort werk kan bijdragen aan een inclusieve en rechtvaardige samenleving. Kom langs en laat je inspireren!

Muriël Serrurier Schepper is zelfstandig ondernemer, expert in data en artificial intelligence met een achtergrond in arbeids- en organisatiepsychologie. Zij is auteur van het boek Artificial Intelligence In Actie en leidt het AI Annotatie Lab.  

Marjolein Grootjen

Ontdek de kracht van data labeling: kansen voor een diverse en inclusieve arbeidsmarkt

(duopresentatie met Muriel Serrurier Schepper)

Als jobcoach bij het AI Annotatie Lab vanuit Regio Gooi en Vechtstreek begeleidt Marjolein de kandidaten die zichzelf hebben aangemeld of aangemeld zijn vanuit de verschillende gemeenten. In een traject van 6 maanden vanuit een veilige werkomgeving gaat zij samen met de kandidaat de werknemers- en sociale vaardigheden trainen. Zo komt de kandidaat erachter wat zijn intrinsieke motivatie is om te gaan werken. Tijdens deze sessie deelt ze haar persoonlijke ervaringen en laat ze zien hoe ze deelnemers stap voor stap helpt om verder te komen. Ook wordt besproken waarom dit werk bij uitstek geschikt is voor bepaalde doelgroepen.

Marjolein Grootjen is jobcoach bij WerkgeversServicepunt Regio Gooi en Vechtstreek.

Muriel en Marjolein doen samen 1 sessie

Jessica de Ruijter - Lansco

Platformwerk opzetten vanuit de coöperatieve gedachte

(duopresentatie met Leo Beekmans)

Hoe kan werken vinden via een platform nieuwe kansen bieden voor participatie en inclusie? 
In deze inspiratiesessie komen twee voorbeelden voorbij hoe de platformtechnologie vanuit de coöperatieve gedachte wordt ingezet om mensen met een uitkering te helpen met het verkrijgen van nieuwe opdrachten en werkzaamheden. Leo Beekmans van BridgeWorks en Jessica de Ruijter van LaNSCO United vertellen waarom zij deze platformen hebben opgezet, wie zij daarmee bereiken en welke nieuwe kansen deze platformen bieden voor een inclusieve arbeidsmarkt. Ook gaan ze in op hoe zo’n platform werkt in samenwerking met een sociale coöperatie, en wat hun ervaringen en geleerde lessen zijn.

Jessica de Ruijter is directeur van LaNSCO en medeoprichter van sociale coöperatie de Blauwe Paraplu.

Leo Beekmans

(duopresentatie met Jessica de Ruijter)

Leo Beekmans is arbeidsdeskundige, re-integratieconsulent, coach bij WerkmansMobiliteit en bij BridgeWorks

Robbert Boonk

Het beste wat je iemand kunt geven is een kans!

(duopresentatie met Laurens Waling)

Een matching platform voor mensen met een afstand tot de arbeidsmarkt - zonder de oneerlijke concurrentie van mensen zonder beperking. Een matching platform waar werkgevers hun vacature en hun organisatie moeten toetsen op beperkende factoren. Alleen zo ontstaan er matches zonder beperkingen. Robbert Boonk ontwikkelde dit initiatief samen met vijf internationale partners, en inmiddels is het systeem bijna operationeel. In hun zoektocht kwamen ze het hightech platform van 8Vance tegen, waar matches worden gemaakt met behulp van Artificial Intelligence (AI). Kandidaten maken een zogenaamd ‘Ability Profile’ aan en dat doet de werkgever ook voor zijn vacature. 

Het systeem Work 4 Everyone is bijna klaar. In deze sessie laat Robbert Boonk aan de hand van de proefversie alvast zien hoe het werkt. Robbert en Laurens vertellen wat het is, hoe het werkt en wat de impact hiervan kan zijn. 

Robbert Boonk is directeur van de PHH Academie (opleider van gecertificeerde jobcoaches) en mede-initiator van matching platform Work 4 Everyone.

Laurens Waling

(duopresentatie met Robbert Boonk)

Laurens Waling is organisatievernieuwer en Chief Evangelist bij 8vance Matching Technologies.

Over NSvP

De NSvP maakt zich hard voor een menswaardige toekomst van werk. We stellen de vraag hoe de arbeidsmarkt van morgen eruit ziet en onderzoeken hoe werk zodanig kan worden ingericht dat het bijdraagt aan de menselijke waarden en behoeften. We zijn een onafhankelijke stichting. We financieren als vermogensfonds innovatieve projecten op het snijvlak van mens, werk en organisatie.

Rijnkade 88
6811 HD Arnhem
info@nsvp.nl
026 - 44 57 800

 

Vind ons op Facebook
Volg ons