Dag van de Inclusieve Arbeidsmarkt: 4 november

Dag van de Inclusieve Arbeidsmarkt Muntgebouw Utrecht

De NSvP, Goldschmeding Foundation en Instituut Gak organiseren op maandag 4 november 2019 de Dag van de Inclusieve Arbeidsmarkt. Tijdens dit symposium maken we de stand van zaken op rond de inclusieve arbeidsmarkt. Daarbij zoeken we met maatschappelijke organisaties, werkgevers, beleidsmakers en onderzoekers een concreet antwoord op de vraag welke praktische stappen er moeten worden ondernomen om de Nederlandse arbeidsmarkt inclusiever te maken.

Met eigen kracht naar een baan

De publicatie is het eindrapport van het project 'Met eigen kracht naar een baan'. Dertig jongeren met een beperking die een vraag naar werk hadden zijn gevraagd deel te nemen aan de Eigen Kracht-conferentie. De experimenten die op drie locaties zijn uitgevoerd worden beschreven in dit evaluatierapport.

Boek: Diversiteit: Hoofd, hart en buik

'Diversiteit: Hoofd, hart en buik - de inclusieve aanpak' beschrijft vijf interventies gericht op de implementatie van diversiteitbeleid en het creëren van een inclusieve cultuur. Hoe stimuleer je op teamniveau het vermogen om met verschillen in identiteit, cultuur of achtergrond om te gaan? Hoe zorg je dat verschillen herkend, benut en gewaardeerd worden ten behoeve van de kwaliteit van de dienstverlening?

Waarom AI niet neutraal is: bias #5 masking

ai recruitment selection

Waar we in eerdere artikelen spraken over hoe het gebruik van data mining en algoritmes onbedoeld kan leiden tot discriminatie bij de werving en selectie van personeel, draait dit laatste mechanisme de rollen een beetje om. Algoritmes bieden namelijk handvatten om juist bewust te discrimineren. We bespreken het laatste mechanisme genoemd door onderzoekers Barocas en Selbst: masking

Waarom AI niet neutraal is: bias #4 proxies

werving selectie algoritme bias proxy

Proxies zijn cijfers die correlaties aanduiden tussen bepaalde concepten, waardoor ze voor een algoritme dienen als een soort voorspellers. Blond haar is bijvoorbeeld een proxy voor een blank huidtype. Aan de hand van zulke correlaties worden mensen ingedeeld in groepen. Er ontstaan patronen waaruit blijkt dat bepaalde groepen gemiddeld slechtere prestaties, vaardigheden of capaciteiten vertonen, met als gevolg een systematische uitsluiting van die groepen. Wat kunnen we eraan doen?

Waarom AI niet neutraal is: bias #3

HR algoritme werving selectie bias

Als je algoritmes wil gebruiken om iets automatisch te voorspellen, moet je de wereld vereenvoudigen om het in programmeertaal te kunnen vastleggen. Bijvoorbeeld: wil je een slimme kandidaat - neem iemand met een universitair diploma. Organisaties maken dus keuzes over welke indicatoren ze opnemen in hun algoritmische analyses. Dit keuzeproces wordt ‘feature selection’ genoemd. Omdat algoritmes een vereenvoudigde wereld vereisen, kunnen biases ontstaan. Deel 3 uit een serie van vijf.

18 juni ’19: OmkeerEvent over AI in Recruitment

OmkeerEvent 2019 AI in recruitement

Hoe kan AI een goede en eerlijke arbeidsmarkt faciliteren of juist frustreren? Met het OmkeerEvent – AI in Recruitment – op 18 juni 2019 willen we partijen laten kennismaken met HR-technologie aangedreven door Artificiële Intelligentie (AI). Samen willen we scherper krijgen wat de tech-beloften de arbeidsmarkt van morgen écht te bieden hebben. Hoe beïnvloedt het de kansen op werk voor verschillende partijen – positief, maar mogelijk ook negatief? De AI-technologie is boeiend en interessant en kan zeer nuttig zijn. Maar welke vragen moeten we ons blijven stellen in zowel de wetenschap als praktijk? Denk en debatteer mee!

Waarom AI niet neutraal is: bias #2

Bias AI - werving & selectie recruitment algoritmes

Wat een algoritme leert, hangt af van de ‘trainingsdata’ waaraan het is blootgesteld. Deze gegevens trainen het algoritme om zich op een bepaalde manier te gedragen. De kwaliteit en waarde (en neutraliteit) van de ingevoerde data is hierbij dus essentieel. Dit valt onder te verdelen in twee categorieën: ‘labelling examples’ en ‘data collection’. Deel 2 in de (5-delige) serie Waarom AI niet neutraal is.

Waarom AI niet neutraal is: bias #1

Bias in AI - werving & selectie recruitment algoritmes

Organisaties gebruiken data als input voor algoritmes, die hen vervolgens kunnen ondersteunen in het maken van keuzes. Stel, een organisatie wil uit een grote groep potentiële medewerkers een selectie maken van 'goede' werknemers. Hoe definieer je ‘goed’ in meetbare eigenschappen? Is een goede werknemer iemand die de meeste producten verkoopt? Iemand die nooit te laat komt? In eerste instantie lijken dit redelijke overwegingen in het voorspellen van ‘goede’ werknemers, maar uitsluiting van groepen mensen is hierbij reëel. Deel 1 uit een serie: Waarom een doelvariabele kan leiden tot (onbedoelde) discriminatie.

Psychotechniek revisited

David van Lennep algoritmes psychotechniek

In het werving en selectieproces is in de afgelopen eeuw veel kennis ontwikkeld over het beoordelen en meten van geschiktheid, het kritisch toetsen van instrumenten op validiteit en betrouwbaarheid, en het terugdringen van bias. Er doet zich nu een nieuw fenomeen voor: de inzet van AI in recruitment en selectieprocedures. Claims zijn dat dat sneller, effectiever en met minder bias plaatsvindt dan met de tussenkomst van mensen. Opvallend is dat de ICT bij de ontwikkeling van algoritmes een belangrijke rol speelt, maar dat de link naar bestaande kennis vanuit de personeelsselectie weinig wordt gelegd. Wat is er nodig om de uitspraken over geschiktheid op zijn merites te kunnen toetsen en hoe kan door samenwerking tussen personeelspsychologie en ICT de kwaliteit verbeterd worden?

Over NSvP

De NSvP is een onafhankelijk vermogensfonds, dat zich inzet voor een menswaardige toekomst van werk. Wij stellen de vraag hoe de arbeidsmarkt van morgen er uit ziet en wat dat vraagt van de talent-ontwikkeling van jongeren en werkenden.

Rijnkade 88
6811 HD Arnhem
info@nsvp.nl
026 - 44 57 800

logo footer

Vind ons op Facebook
Volg ons